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a b s t r a c t

In this paperwepropose a newapproach to on-line Takagi–Sugeno fuzzymodel identification. It combines
a recursive fuzzy c-means algorithm and recursive least squares. First the method is derived and than it
is tested and compared on a benchmark problem of the Mackey–Glass time series with other established
on-line identification methods. We showed that the developed algorithm gives a comparable degree
of accuracy to other algorithms. The proposed algorithm can be used in a number of fields, including
adaptive nonlinear control,model predictive control, fault detection,

∧
diagnostics and robotics. An example

of identification based on a real data of the waste-water treatment process is also presented.
© 2011 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction1

Takagi–Sugeno models are a powerful practical engineering2

tool for the modeling and control of complex systems. They3

expand and generalize thewell-known concept of gain scheduling.4

T–S models utilize the idea of linearization in a fuzzily defined5

region of the state space. Due to the fuzzy regions (clusters), the6

nonlinear system is decomposed into a multi-model structure7

consisting of linear models [1]. This enables the T–S fuzzy model8

to approximate virtually any nonlinear system within a required9

accuracy, provided that enough regions are given [2].10

To build the T–S model the structure and the parameters of11

the local models must be identified [3]. Structure identification12

includes an estimation of the cluster centers (antecedent param-13

eters), which is usually done by fuzzy clustering. Then for each14

cluster the sub-model’s parameters are estimated, which is usually15

done with a least-squares method [4].16

The identification can be made off-line [5–8] or on-line [9–11].17

Themethods for off-line identification suppose that all the data are18

available at the start of the training process (identification). The use19

of this
∧
method for on-line identification is limited [9]. For on-line20

identification the whole model structure must be re-trained using21

time consuming iterative techniques such as back-propagation [7],22

genetic algorithms [12,13] or other nonlinear techniques [14].23

∗ Corresponding author.
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On-line fuzzy model identification methods mainly use the 24

recursive or weighted recursive least squares for the identification 25

of the sub-model parameters. The key differences among them are 26

the differentmethods of fuzzy structure identification, i.e., how the 27

clustering and the structure
∧
evolution are made. 28

For on-line identification of nonlinear systems a variety of 29

methods were developed in recent years. The approaches use dif- 30

ferent mechanisms for the rules update. Some of the methods that 31

are based on fuzzy logic or a combination of fuzzy logic and neural 32

networks are listed below. 33

The evolving fuzzy neural networkmethod (EFuNN) [15], which 34

was introduced as a part of the ECOS framework [16]
∧
combines the 35

neural network and fuzzy logic to
∧
build the nonlinear model. The 36

distance between new data sample and cluster center is used to 37

adjust rules. The fuzzy output space adjusts through the output er- 38

ror through
∧
Widrow–Hoffs’ LMS algorithm. A detailed description 39

can be found in [17]. Similar to the EFuNN is the dynamic evolving 40

neural-fuzzy inference system algorithm (DENFIS) [10]. It inherits 41

and develops the EFuNN’s dynamic features. The DENFIS employs 42

the evolving clustering method (ECM) [10], which is a maximum- 43

distance-based clustering method. A scatter partitioning of the in- 44

put space is used for the purpose of creating the fuzzy rules. The 45

ECM is a one-pass algorithm for a dynamic estimation of the num- 46

ber of clusters in a set of data and for finding their current centers in 47

the input data space.With respect to the predefinedmaximumdis- 48

tance between the newdata sample and the current cluster centers 49

and the cluster center radius the position of the centers is either 50

updated and the radius is increased or a new cluster is introduced. 51

The distance of any new input data to the cluster centers never ex- 52

ceeds the predefinedmaximumdistance. The DENFIS uses triangu- 53

lar membership functions and the first-order T–S-type fuzzy rules 54
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are employed. It uses a recursive,weighted least-squares estimator1

to estimate the sub-models.2

The evolving Takagi–Sugeno model (eTS) [9], which is a further3

development of the evolving rule-based models (eR) [18] uses the4

informative potential of a new data sample as a trigger to update5

the rule base. The eR generates a new rule if there is significant6

new information present in the collected data. It uses the recursive7

clustering algorithm [19] basedon subtractive clustering [4],which8

is an improved version of mountain clustering [20], to estimate9

the clusters. Based on a calculation of the potential between10

the new data sample and the cluster centers the old clusters11

are updated or, if the potential exceeds a certain predefined12

potential threshold, new clusters are introduced. For a sub-model13

parameters estimation the recursive or weighted recursive least14

squares are used with the resetting co-variance matrix and the15

parameters initialization, which is needed because of the rule16

insertion.17

The self-organizing fuzzy neural network (SOFNN)method [21]18

uses theN-first nearest neighborhood heuristic to define thewidth19

of the Gaussian membership functions. The centers of the clusters20

are obtained with the rival penalized algorithm (RPLC) [22].21

The SOFNN structure identification includes adding, pruning and22

combination of neurons. The new neurons are added when the23

error criterion or the sample-coverage criterion are not met;24

the pruning of a neuron occurs when the neuron makes a little25

contribution to error reduction. The combination of the neuron26

occurs when two neurons or membership functions are highly27

similar.28

The SAFIS-sequential adaptive fuzzy inference system [23] is29

similar to the SOFNN, butwith different criteria for the rule adding.30

For a new training sample the adding of the rule is based on the31

input-data coverage and occurs when a new training data sample32

is outside the distance threshold to the existing centers of the neu-33

rons (i.e., the centers of Gaussian membership functions) and its34

influence on the output is large enough (the new neuron is added35

when its contribution to the output is significant). Both the SOFNN36

and SAFIS use Gaussian membership functions as apposed to the37

incremental construction learning algorithm (ICLA) [24] that uses38

triangular membership functions. In the ICLA the structure identi-39

fication is driven by the error reducing and the structure-evolving40

mechanism. This ensures the fine partition for the input-data re-41

gion with high output variation and the coarse partition for the42

input-data region with the small output variation. This is in con-43

trast to the unformed SOFNN partitioning and the time-decaying44

SAFIS partitioning. The ICLA should make more appropriate input45

space partitions.46

There are also other on-line methods that deal with the fuzzy47

structure identification, based on more or less the same princi-48

ples as the above-describedmethods, such as the self-constructing49

neural network (SCFNN) [25], the dynamic fuzzy neural network50

(D-FNN) [26] and the general dynamic fuzzy neural network (GD-51

FNN) [27]. They use the error to update the fuzzy rules, like with52

the SOFNN. The self-constructing neural fuzzy interface network53

(SONFIN) [28] uses the distance from the cluster centers to update54

the rules likewith the DENFIS; the neural fuzzy control network al-55

gorithm (NFCN) [29] uses Kohen’s feature maps; the neuro-fuzzy56

ART-based structure and parameter learning TSK model (Neuro-57

FAST) [30] uses the adaptive resonance theory (ART) concept; and58

the generalized adaptive neuro-fuzzy inference system (GANFIS)
∧

59

[31] is using modified mountain clustering [32].60

In this article a recursive c-means clustering method is devel-61

oped and tested against some established on-line clusteringmeth-62

ods (DENFIS [10], ETS [9], RAN [33], ESOM [34], EFuNN [15] and63

Neural gas [35]) on a benchmark problem of the Mackey–Glass64

time series [36].65

The proposed method is similar to Angelov and Filev’s on-line66

clustering [9]. The difference is that their method is based on the67

subtractive clustering off-line method [4], whereas our method 68

is based on the fuzzy c-means off-line clustering method [37]. 69

The positions of the centers in our method depend on a weighted 70

mean of the data belonging to the i-th cluster, whereas with 71

Angelov’s method the centers can only be the data samples with 72

the largest potential. Also, thewidth of themembership function in 73

ourmethod depends on the fuzzy variance and changes depending 74

on the data pattern, whereas with Angelov’s method the width is 75

fixed and predefined. Both methods use the Gaussian membership 76

functions. The local linear sub-models are, in both cases, updated 77

with recursive least squares. 78

The paper shows that the proposed method gives good results 79

with a small number of clusters which makes it computationally 80

efficient and transparent. It can also be easily compared to other 81

established methods. The method can be used for clustering large 82

numbers of data, where the off-line methods cannot be used be- 83

cause of memory demands. The method can be used in combina- 84

tion with control algorithms that use fuzzy
∧
models, to construct 85

the adaptive versions of the algorithms (for example fuzzy pre- 86

dictive functional
∧
controllers). It can also be easily modified to 87

construct a recursive version of the Gustafson–Kessel clustering 88

algorithm, which is probably one of themost frequently used algo- 89

rithms when constructing the fuzzy models for control purposes. 90

2. Fuzzy c-means clustering 91

In this section we will first give a brief description of the fuzzy 92

c-means clustering algorithm [37], which is the foundation for our 93

further development of a recursive fuzzy clustering algorithm. 94

We assume that each observation consists ofm samples, which 95

are grouped into an m-dimensional vector
∧
x(k)T = [x1(k), . . . , 96

xm(k)], x(k) ∈ Rm, where xm(k) stands for the m-th measurement 97

at the time instant k. A set of n observations is then denoted as 98

X = {x(k) | k = 1, 2, . . . , n}, X ∈ Rn×m. 99

Themain objective of the clustering is to partition the data set X 100

into c subsets, which are called clusters. The data matrix X is given 101

as follows: 102

X =


x1(1) x2(1) · · · xm(1)
x1(2) x2(2) · · · xm(2)
...

...
...

...
x1(n) x2(n) · · · xm(n)

 . (1) 103

The data vector at the time instant k is defined as (the rows of 104

the matrix X) x(k)T = [x1(k), . . . , xm(k)], x(k) ∈ Rm. The fuzzy 105

partition of the set X is a family of fuzzy subsets {Ai | 1 ≤ 106

i ≤ c}. These fuzzy subsets are defined by their membership 107

functions,which are implicitly defined in the fuzzypartitionmatrix 108

U = [µi(k)] ∈ Rc×n. The i-th row of the matrix U contains 109

the values of the membership function of the i-th fuzzy subset Ai 110

of the data matrix X . The partition matrix satisfies the following 111

conditions: the membership degrees are real numbers from the 112

interval µi(k) ∈ [0, 1], 1 ≤ i ≤ c, 1 ≤ k ≤ n; the total 113

membership of each of the samples in all the clusters equals one 114∑c
i=1 µi(k) = 1, 1 ≤ k ≤ n; none of the fuzzy clusters is empty 115

nor do any contain all the data 0 <
∑n

k=1 µi(k) < n, 1 ≤ i ≤ c. 116

This means that the fuzzy partition matrix U belongs to the fuzzy 117

partition set, which is defined as: 118

M =


U ∈ Rc×n

| µi(k) ∈ [0, 1],∀i, k;
c−

i=1

µi(k) = 1,∀k; 119

0 <
n−

k=1

µi(k) < n,∀i


. (2) 120

The c-means algorithm for clustering in n dimensions produces 121

c mean vectors that represent c classes of data. The algorithm
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relies on a distortion measure d(x(k), vi) between the points in1

data space x(k), vi ∈ Rm, where x(k) denotes a certain point in that2

space, an observation, and vi stands for the centroid. A variety of3

different norms can be used to define the distortion measure, such4

as L1, L2 and L∞, or any other specific to the problem. The algorithm5

is based on aminimization of the fuzzy c-means objective function,6

which is introduced as the weighted-criterion function7

J(X,U, V ) =

c−
i=1

n−
k=1

(µi(k))ηd2(x(k), vi) (3)8

subject to the constraints9

c−
i=1

µi(k) = 1 ∀k, (4)10

where V is a matrix of cluster centroid vectors
∧
vi, V = [v1, . . . ,11

vc]
T , and the overlapping factor or the fuzziness parameter η that12

influences the fuzziness of the resulting partition is denoted as η;13

from the hard (η = 1) to the partition that is completely fuzzy14

(η → ∞). In our approach the standard value η = 2 is used. In15

the case of the classical c-means clustering algorithm thedistortion16

measure is defined as L2 norm.17

The problem of finding the fuzzy clusters in the data set X is18

now solved as a constrained optimization problem using Lagrange19

multipliers, which consider theminimization of the function in Eq.20

(3) over the domain X , and taking into account the constraints in21

Eq. (4).22

The objective function is now defined as follows23

J(X,U, V , λ) =

c−
i=1

n−
k=1

(µi(k))η(x(k)− vi)
T (x(k)− vi)24

+

n−
k=1

λk

c−
i=1

(µi(k)− 1) (5)25

where λk, k = 1, . . . , n are the Lagrange multipliers.26

Theminimumof the objective function J(X,U, V , λ) is obtained27

via the Lagrange multipliers method and is given as follows:28

µi(k) =

d2ik
c−

j=1


1
d2jk

 1
η−1
−1

(6)29

where dik defines the Euclidian distance (L2-norm) between the30

observation x(k) and the cluster centroid vi as follows:31

d2ik = (x(k)− vi)
T (x(k)− vi), 1 ≤ i ≤ c, 1 ≤ k ≤ n. (7)32

The cluster centroid vi is defined as the weighted mean of the data33

belonging to the i-th cluster, where the weights are the member-34

ship degrees and are given as follows:35

vi =

n∑
k=1
µ
η

i (k)x(k)

n∑
k=1
µ
η

i (k)
. (8)36

3. Recursive fuzzy c-means clustering37

When the behavior of the process that generates the observed38

data changes during the time, the clustering should be done recur-39

sively to obtain the clusters that describe the current behavior.40

3.1. The recursive center calculation41

To develop the recursive fuzzy clustering algorithmwewill first42

define the cluster centroid vector vTi = [vi1, . . . , vim ] according43

to the current observation, i.e., the weighted mean of the data44

according to the current membership degrees. This introduces the45

notation vi(r), whichmeans the cluster centroid at the time instant

r that is obtained by weighting with the current membership 46

degrees. The cluster centroid in the next observation is denoted as 47

vi(r + 1) =

r+1∑
k=1
µ
η

i (k)x(k)

r+1∑
k=1
µ
η

i (k)
48

=

r∑
k=1
µ
η

i (k)x(k)+ µ
η

i (r + 1)x(r + 1)

r∑
k=1
µ
η

i (k)+ µ
η

i (r + 1)
(9) 49

where µi(k), k = 1, . . . , r + 1 denotes the membership degree of 50

the observation vector x(k)T = [x1(k), . . . , xm(k)], k = 1, . . . , r + 51

1 to the cluster i at the time instant k. Introducing the relation 52

between the old cluster centroid and a new one as follows: 53

vi(r + 1) = vi(r)+1vi(r + 1) (10) 54

and taking into account Eq. (9) the Eq. (14) is obtained: 55

vi(r + 1) =

r∑
k=1
µ
η

i (k)x(k)/
r∑

k=1
µ
η

i (k)

r+1∑
k=1
µ
η

i (k)/
r∑

k=1
µ
η

i (k)

+
µ
η

i (r + 1)x(r + 1)
r∑

k=1
µ
η

i (k)+ µ
η

i (r + 1)
(11) 56

vi(r + 1) =

vi(k)
r∑

k=1
µ
η

i (k)

r+1∑
k=1
µ
η

i (k)
+

µ
η

i (r + 1)x(r + 1)
r∑

k=1
µ
η

i (k)+ µ
η

i (r + 1)
(12) 57

vi(r + 1) = vi(k)−
vi(k)µ

η

i (r + 1)
r+1∑
k=1
µ
η

i (k)

+
µ
η

i (r + 1)x(r + 1)
r∑

k=1
µ
η

i (k)+ µ
η

i (r + 1)
(13) 58

1vi(r + 1) =
µ
η

i (r + 1)(x(r + 1)− vi(r))
r∑

k=1
µ
η

i (k)+ µ
η

i (r + 1)
. (14) 59

The cluster centroid increment in Eq. (14) cannot be calculated in 60

the present form, because we cannot calculate the denominator in 61

Eq. (14). The calculation of the membership degrees requires all 62

the past r observations. This is against the recursive approach. An 63

approximate calculation of this term can be made by introducing 64

the exponential weighting of the past membership degrees, which 65

are calculated at each time instant. Theweights of the past data are 66

decreasing exponentially. 67

The term in the denominator is denoted as si(k) ∈ Rc and cal- 68

culated as 69

si(r + 1) = γvsi(r)+ µ
η

i (r + 1) (15) 70

where si(r) is defined as follows 71

si(r) =

r−
k=1

µ
η

i (k). (16) 72

The parameter γv, (0 ≤ γv ≤ 1) denotes the forgetting factor of a 73

past observation, i.e., the forgetting factor of the past membership 74

degrees. The1vi(r + 1) can now be written as: 75

1vi(r + 1) =
µ
η

i (r + 1)(x(r + 1)− vi(r))
si(r + 1)

. (17) 76
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The current membership degree µi(r + 1) is next defined as1

follows:2

µi(r + 1) =

d2i,r+1

c−
j=1


1

d2j,r+1

 1
η−1
−1

(18)3

where d2i,r+1 defines the quadratic distance from the cluster cen-4

troid as follows:5

d2i,r+1 = (x(r + 1)− vi(r))T (x(r + 1)− vi(r)), 1 ≤ i ≤ c. (19)6

3.2. The recursive fuzzy covariance calculation7

Around each cluster centroid the distribution of the data can be8

described using the fuzzy covariance matrix, Fi(r) ∈ Rm×m, i =9

1, . . . , c and r stands for the number of samples used to calculate10

the matrix. The fuzzy covariance matrix is defined as the weighted11

covariance matrix as follows:12

Fi(r) =

r∑
k=1
µ
η

i (k)(x(k)− vri )(x(k)− vri )
T

r∑
k=1
µ
η

i (k)
(20)13

where vri stands for the centroid vector of the i-th cluster calcu-14

lated for the set of r samples. The fuzzy covariance matrix at the15

next sample (r + 1) can be expressed as followsQ116

Fi(r + 1) =

r∑
k=1
µ
η

i (k)(x(k)− vr+1
i )(x(k)− vr+1

i )T

r∑
k=1
µ
η

i (k)+ µ
η

i (r + 1)
17

+
µ
η

i (r + 1)(x(r + 1)− vr+1
i )(x(r + 1)− vr+1

i )T

r∑
k=1
µ
η

i (k)+ µ
η

i (r + 1)
(21)18

where vr+1
i stands for the centroid vector of the i-th cluster cal-19

culated for the set of r + 1 samples. Taking into account Eq. (20),20

introducing it into Eq. (21), and using Eqs. (15) and (16), the fol-21

lowing approximate recursive expression for the fuzzy clustering22

matrix is obtainedQ223

Fi(r + 1) = γc
si(r)

si(r + 1)
Fi(r)+

µ
η

i (r + 1)
si(r + 1)

24

· (x(r + 1)− vi(r + 1))(x(r + 1)− vi(r + 1))T . (22)25

The initial value for the matrix Fi can be set as Fi(0) ≈, I ∈ Rm×m.26

3.3. Applying the recursive least squares27

The centers of the fuzzy clusters and their distribution are28

used to define the new membership functions’ distribution and29

using the recursive least squares method the fuzzy model is30

obtained. Using the projection of the cluster onto the independent31

variables, the input membership functions are obtained. Here we32

are assuming that the first m − 1 measured variables represent33

the input variables and the last m-th variable in the data matrix X34

represents the output. In our case the clusters are approximated35

by the Gaussian membership functions, with center vi and the36

variance σ 2
i,j = ηmfi,j, where using ηm the overlapping between37

the membership functions is defined and fi,j stand for the diagonal38

elements of the fuzzy covariancematrix. Themembership function39

of the i-th cluster and the j-th component of x(k) is therefore40

defined as41
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Fig. 1. 85-step-ahead prediction of the M–G time-series. The dots
∧
represent the

model output with 100 clusters, the solid line is the real data. In the lower graph
the absolute error between model and process output is represented.

µi(xj(k)) = e
−
(xj(k)−vij(k))(xj(k)−vij(k))

T

2σ2i,j(k) , 42

i = 1, . . . , c, j = 1, . . . ,m − 1. (23) 43

Them−1 input variables define the hyperspace, and the subspaces 44

in this hyperspace are defined as the Cartesian product of the 45

subspaces. These imply the definition of the membership degree 46

in each subspace as the product of the membership degrees as 47

follows: 48

βi(k) =

m−1∏
j=1

µi(xj(k)). (24) 49

The fuzzy recursive least squares algorithm [38,10] is then ob- 50

tained as follows: 51

ψT
i (k + 1) = βi(k)[1, x1(k), x2(k), . . . , xm−1(k)] 52

yi(k) = βi(k)xm(k) 53

Pi(k + 1) =
1
λr


P(k)−

Pi(k)ψi(k + 1)ψT
i (k + 1)Pi(k)

λr + ψT
i (k + 1)Pi(k)ψi(k + 1)


54

θi(k + 1) = θi(k)+ Pi(k)ψi(k + 1)(yi(k)− ψT
i (k + 1)θi(k)) (25) 55

whereλr stands for the exponential forgetting factor,which should 56

be set between 0.95 and 1 [39] to dealwith time-varying processes, 57

Pi stands for the covariancematrix,which is set to Pi(0) = 105I, I ∈ 58

Rm×m, and θi represents the parameters of the i-th local model and 59

is written as follows: 60

θ Ti = [θi,0, θi,1, θi,2, . . . , θi,m−1]. (26) 61
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Fig. 2. 85-step-ahead prediction of the noisy M–G time-series. The upper graph
represents the real output and the model output. The dots

∧
represent the model

output with 100 clusters, the solid line is the real data. The lower graph represents
the error between the real and predicted output.

Each local model contributes to the output of the model with1

the corresponding membership value. The whole set of fuzzy2

model parameters can be written in the matrix as follows:3

Θ = [θ1, θ2, . . . , θc]. (27)4

3.4. The recursive algorithm 5

The recursive algorithm can now be described in the following 6

steps: 7

1. Step 0: Initialization: 8

• define the number of clusters (c), the fuzziness (η, ηm) and 9

the forgetting factors (λr , γv, γc), 10

• determine the initial value of Pi for i = 1, . . . , c , 11

• determine the initial Fi for i = 1, . . . , c 12

• determine the initial centers: vi = x(k), for i = k = 1, . . . , c 13

and membership degrees µi(x(k)) = 1 for i = k, µi(x(k)) = 14

0 for i ≠ k, i, k = 1, . . . , c , 15

• calculate the initial si for i = 1, . . . , c from Eq. (16), 16

2. Step 1: calculate the current membership degree from Eqs. (18) 17

and (19), 18

3. Step 2: calculate the si(r + 1) from Eq. (15) and 1vi from Eq. 19

(17), 20

4. Step 3: calculate the new centers from Eq. (10), 21

5. Step 4: calculate the new fuzzy variance matrix Fi(r + 1) from 22

equation Eq. (22), 23

6. Step 5: calculate themembership functionsµi fromEq. (23) and 24

the membership degrees βi from Eq. (24), 25

7. Step 6: apply the recursive least squares under equations Eq. 26

(25) and return to Step 1. 27

Step 0 is executed only once in the procedure. The first three 28

tasks under
∧
Step 0 are done by the user (definition of forgetting fac- 29

tors (rule of thumb Eq. (33)), number of clusters, initial covariance 30

matrix (Pi(0) ≈ 105I), initial fuzzy covariance matrix (Fi(0) ≈ I) 31

and setting the fuzziness (ηm ≈ 0.25 to 1) and overlapping factors

Fig. 3. Plot of instantaneous AE for time-varying process.
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Fig. 4. Plot of cluster path. In each box the path of one cluster is represented. The upper graph in the box represents the path in the input space and the lower graph in the
output space.

(µ ≈ 2))
∧
. Everything else is initialized from the algorithm itself.1

The steps from Step 1 to Step 6 are executed for the time instances2

k ≥ c + 1 for every new sample.3

The forgetting factors affect the speed of the adaptation and the4

smoothness of estimates. For time varying processes, the factors5

must be lower than one to ensure the forgetting. By lowering the6

forgetting factors the fluctuations of estimates will increase and7

the method will be more sensitive to outliers.8

The fuzziness factors define the smoothness of the nonlinearity9

approximation. The higher they are the more smooth nonlinearity10

we get, but to high values cause a bigger identification error. The11

values that give a good result are: ηm = from 0.25 to 1 and η = 2.12

The number of clusters must be set in advance. The number13

depends on the data and the desired approximation quality. This14

can be in some cases the disadvantage of the method. If you15

are doing classification and clustering of the data with unknown16

input and output range it is better to use methods with evolving17

structure like eTS. If you are identifying the model for prediction18

or model based control of the process the input and output data19

range is usually known and therefore we can use the fixed number20

of clusters.21

4. Simulation examples22

The proposed method was tested on a standard benchmark23

problem of the Mackey–Glass time-series [36] prediction and on24

the example from Kumar’s paper [40].25

Mackey–Glass time series26

The chaotic time series is generated from the M–G differential27

delay equation defined by the following equation:28

x(t) =
0.2x(t − τ)

1 + x10(t − τ)
− 0.1x(t). (28)29

The aim is to use past values of x to predict some future value30

of x. We assume x(0) = 1.2, τ = 17 and the value of the signal is31

Table 1
Comparison of recursive c-means method and other fuzzy identification methods
on a 85 steps ahead prediction of the M–G time-series.

Methods Rules (nodes, clusters) NDEI

DENFIS 58 0.276
eTS 113 0.0954
RAN 113 0.375
ESOM 114 0.32
EFuNN 193 0.401
DENFIS 883 0.033
ESOM 1000 0.044
Neural gas 1000 0.062
EFuNN 1125 0.094
rec. FCM 3 0.4849
rec. FCM 10 0.4562
rec. FCM 58 0.3085
rec. FCM 100 0.1250

predicted 85 steps ahead, based on the values of the signal at the 32

current moment, 6, 12 and 18 steps back. 33

Output: [x(t + 85)] (29) 34

Input: [x(t − 18)x(t − 12)x(t − 6)x(t)]. (30) 35

For the validation of themodel we used the non-dimensional error 36

index (NDEI), defined as the ratio of the root mean square error to 37

the standard deviation of the target data. In this simulation, 3000 38

data points t ∈ [201, 3200]
∧
were created for the training, and 39

500t ∈ [5001, 5500] were created for the testing, the same as 40

in [10]. The fuzzy model was built on the first 3000 data samples 41

and then this model was used to predict the output for the 500 42

testing samples. The datawas not normalized for the rFCMmethod. 43

The results from other methods are also taken from [10] and are 44

shown in Table 1. Fig. 1 shows the comparison between the real 45

data and the fuzzy prediction model with 100 clusters. 46

We can see that our method gives a comparable degree of 47

accuracy to other
∧
methods that use a reasonable number of rules. 48

From Table 1 we can see that the proposed method gives better 49
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Fig. 5. Plot of the sub model parameters.

Fig. 6. Schematic representation of simulation benchmark.

results than methods like RAN, ESOM, and EFuNN (for around 1001

clusters or rules).2

In order to test the robustness of the recursive FCM we added3

Gaussian noise with a variance of 0.01 to the process. The obtained4

model gave a NDEI of 0.4809 for 100 clusters. The output of the5

model is shown in Fig. 2.6

Identification of time-varying nonlinearity 7

This example was taken from Kumar’s paper [40]. The process 8

is described with the following equation: 9

y = f (x, p) =
−10x
2p + x2

+ p2 tanh(x), (31) 10

where p is the time-varying parameter and x(t) = −0.5 + 11

|3 sin 10t| is the input. The process is simulated from t = 0 to 12

t = 40, with sample time Ts = 0.01. Parameter p varies with time 13

as: Q3 14

p(t) =


1.5, 0 ≤ t < 10
2, 10 ≤ t < 20
1, 20 ≤ t < 30
1.5, 30 ≤ t < 40.

(32) 15

The test was done with added zero mean Gaussian noise 16

with variance 0.01. To test the performance of the algorithm the 17
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Fig. 7. Normalized training set.

Fig. 8. Normalized validation set.

instantaneous absolute estimation error AE(k) was calculated at1

each time instant k as AE(k) = 1/300
∑300

j=1 |f (xj, p(Tsk)) − yfm|,2

where xj are uniformly distributed points from interval [−0.5, 2.5]3

and yfm is the fuzzy model output. The estimation performance4

over considered time span (t = 0 to t = 40)was assessed by defin-5

ing the energy of estimation-error signal AE(k) as
∑4000

k=0 |AE(k)2|.6

For a detailed explanation please see [40].7

The values of the algorithm parameters were chosen as: η = 2,8

ηm = 0.25, the forgetting factor λr = 0.998, γv = 0.998 and9

γc = 0.998, number of clusters c = 4. To get better results the10

resetting [39] of least-square covariance matrix, sk
∧
, and the fuzzy11

covariance matrix was introduced. The resetting is done when the12

output of the process and model output differ by more than 1. The13

forgetting factors were chosen based on the rule of thumb given14

in [39]:15

λ = 1 − 2/N, (33)16

where λ is the forgetting factor and N are the data samples, that17

affect the estimates.18

The overall performance
∑4000

k=0 |AE(k)2|


of the proposed19

recursive algorithmwas a bit better then the
∧
ones reported in [40].20

The proposedmethod gave the overall performance of 20.45, while 21

the best value in [40] was 225.49. The absolute estimation error is 22

shownon Fig. 3. The paths of the cluster centers are shownon Fig. 4. 23

Fig. 5 shows the parameters of the sub models, where the output 24

of the i-th sub model is calculated as y = ax + r . 25

The same test was made when the process parameter p was 26

uncertain. The random chosen number from uniform distribution 27

interval [−0.02 0.02] was added to the p at each time instant k. The 28

results were almost the same as with no parameter uncertainty. 29

The overall performance of 25.48 was a bit higher
∧
. 30

Both
∧
the tests were also made for fixed membership functions. 31

The first 1000 samples were used to identify the model using the 32

presented on-line identification method. Then the parameters of 33

the membership degrees were fixed and the tuning of the sub- 34

models was done only using the recursive fuzzy least squares. For 35

the first test we got the overall performance of 25.63 and for the 36

second test (uncertain parameter p) the overall performance was 37

28.59. 38

For comparison also eTS and SAFIS were tested on this example. 39

While the proposed method gave about the same AE value each 40

simulation run, the results of the SAFIS and eTS varied substan- 41

tially. The best overall AE given by these two methods using the 42
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Fig. 9. Normalized output (validation).

proposed settings was 183.43 for SAFIS (11 clusters) and 1123.21

for eTS (5 clusters). The results of these twomethods can
∧
probably2

be improvedwith the optimization of the parameters and probably3

some covariance resetting.4

Identification of model for predicting the oxygen in the waste-water5

treatment process6

In this example the SAFIS, eTS and the proposed method are7

used to identify a static prediction model of O2 in a waste-water8

treatment process.9

Waste-water treatment plants are large nonlinear systems10

subject to large perturbations in flow and load, together with un-11

certainties concerning the composition of the incoming waste-12

water [41]. The process consists of five sequentially connected13

reactors along with a 10-layer secondary settling tank. The plant14

layout, model equations and control strategy are described in15

detail on the web page (http://www.ensic.u-nancy.fr/costwwtp).16

Schematic representation is shown in Fig. 6. The data from which17

the models were identified was collected from a waste-water18

treatment plant. The set of measurements are: ammonia in the last19

aerobic tank (NH2
4), oxygen in the first aerobic reactor (O1

2), am-20

monia in the first aerobic tank (NH1
4), waste-water temperature21

(Tw), total airflow rate (Air) and oxygen in the last aerobic reac- 22

tor (O2
2). The last measurement is the output of

∧
our model, the rest 23

of them are the inputs. Measurements were divided into two sets. 24

The training set (Fig. 7) and the validation set (Fig. 8). Themeasure- 25

ments in the training set have a lot of outliers. For the identification 26

of themodel themeasurements were normalized as it was noticed 27

that eTS performs better with normalized values. First the train- 28

ing set was used to identify the model on-line with the methods. 29

The trainedmodelwas then used to estimate the output of the pro- 30

cess on the validation set. Fig. 9 represents the results of the valida- 31

tion. The eTS method evolves to 85 clusters and the SAFIS evolves 32

to 26 clusters. The parameters for the eTS were set as proposed 33

in [19]. For SAFIS the parameters were tuned as: κ = 2, εmax = 34

0.001, εmin = 1e−4, eg = 5e−6, ep = 5e−10 and γ = 1. At this 35

point it is worth
∧
mentioning that the authors find the parameter 36

tuning of the SAFIS very time consuming and difficult. The settings 37

for the rFCM (the proposed method) were chosen as: c = 15, η = 38

2 and ηm = 0.25. The forgetting factors were set to one. 39

The maximal error for the SAFIS was 0.1735, for the eTS 0.2111 40

and for rFCM 0.1007. The sum squared error for the SAFIS was 41

6.7e − 3, for the eTS 3.18e − 3 and for the rFCM 1.03e − 3. The 42

histograms of the errors are shown in Fig. 10. The autocorrelations 43

of the errors and errors are shown in Fig. 11. 44

Although the eTS gave better results with M–G prediction, the 45

result of this experiment
∧
shows that the proposed method can 46

better cope with outliers. This is very important for on-line iden- 47

tification, where preprocessing of the data is limited. The model 48

obtained with the rFCM is a bit better than the model obtained by 49

SAFIS and eTS. 50

5. Conclusion 51

In this paper the recursive version of the fuzzy c-means cluster- 52

ing algorithm was derived. The algorithm can be used for on-line 53

clustering and identification of the Takagi–Sugeno fuzzy model. 54

The advantage of T–S fuzzy model approach over the neuro-fuzzy 55

approach (for example SAFIS), is that at each time step you can ex- 56

tract the linear model that is valid at a certain time instant. This 57

model can be then used for example for setting the linear controller 58

parameters. 59

The developed method is simple to program, easy to tune and 60

computationally effective as it does not require re-training of the 61
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Fig. 11. The autocorrelation and error graph.

whole model. In addition, the model is updated in only a fraction1

of a second. For the M–G time-series example the model with 1002

clusters was updated in 0.015 s using a Pentium 4 processor with a3

2.4 GHz CPU and 1 GB of RAM, where the algorithmwas written in4

Matlab code. The degree of accuracy can be easily compared with5

other methods.6

The method requires more memory than eTS or SAFIS because7

the fuzzy covariance matrix must be stored. On the other hand8

the memory demands are constant because of the fixed number9

of clusters.10

By developing the recursive fuzzy c-means clustering and com-11

bining itwith recursive least squares a fast and robust algorithm for12

identifying the fuzzymodel fromnumerical datawas obtained. The13

algorithm is robust with respect to the initial parameters and with14

respect to noisy data. The latter is achieved by averaging, which15

takes place in both cluster estimation and in the least-squares es-16

timation procedures.17
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